Biology, Monitoring and Control of Stripe

Rust

Dr. Curtis Thompson, Professor of Extension Crops and Soils K-State Southwest Kansas

Disease System Components

Disease System Components

Where did stripe rust comé from?

• Stripe rust

- Is different organism than leaf rust

Three Rusts of Wheat

Impact of Rusts on Wheat in Kansas

- Stripe rust
 - Is different organism than leaf rust
 - Likely more detrimental to wheat than leaf rust symptoms

Stripe Rust Symptoms

- Yellow linear pustules on leaves
- Usually appears before leaf rust

Rust of Wheat

Stripe Rust of Wheat

initiate infections

secondary cycles

• survival?

Stripe Rust Symptoms

Stripe Rust Symptoms

Stripe Rust of Wheat

- Reduces effective photosynthetic leaf area
- Increases transpiration through ruptures in epidermis
- Reduces root biomass

Stripe Rust of Wheat

- Reduces kernel weight
- Reduces kernel number/head
- Yield loss of 10 15% on moderately susceptible varieties
- Yield loss over 50% on very susceptible varieties

tripe rust in the wheat head

Stripe rust effect on wheat varieties, 2001. Ford Co , Bowdon, Thompson and Hampton.

	Yield (bu/a)		Test weight (lb/bu)	
Variety	Tilt 4 oz	No Tilt	Tilt 4 oz	No Tilt
2137	45	22	59.1	54.2
Ike	47	35	57.7	55.7
Jagger	52	47	59.2	58.1
Lakin	47	17	57.8	50.5
Ogallala	49	35	58.7	57.3
Prairie Red	49	25	58.0	51.2
Stanton	56	35	56.9	53.1
Tam 110	50	30	58.4	52.6
Thunderbolt	46	36	58.0	56.6
Trego	56	25	57.9	53.7
Average	49	31	58.1	54.5
Susceptible avg.	49	25	58.2	52.4

Stripe rust effect on wheat varieties, 2001. Ford Co , Bowdon, Thompson and Hampton.

	Yield (bu/a)		Test weight (lb/bu)	
Variety	Tilt 4 oz	No Tilt	Tilt 4 oz	No Tilt
2137	45	22	59.1	54.2
Ike	47	35	57.7	55.7
Jagger	52	47	59.2	58.1
Lakin	47	17	57.8	50.5
Ogallala	49	35	58.7	57.3
Prairie Red	49	25	58.0	51.2
Stanton	56	35	56.9	53.1
Tam 110	50	30	58.4	52.6
Thunderbolt	46	36	58.0	56.6
Trego	56	25	57.9	53.7
Average	49	31	58.1	54.5
Intermediate avg	50	35	57.8	55.7

Stripe rust effect on wheat varieties, 2001. Ford Co , Bowdon, Thompson and Hampton.

	Yield (bu/a)		Test weight (lb/bu)	
Variety	Tilt 4 oz	No Tilt	Tilt 4 oz	No Tilt
2137	45	22	59.1	54.2
Ike	47	35	57.7	55.7
Jagger	52	47	59.2	58.1
Lakin	47	17	57.8	50.5
Ogallala	49	35	58.7	57.3
Prairie Red	49	25	58.0	51.2
Stanton	56	35	56.9	53.1
Tam 110	50	30	58.4	52.6
Thunderbolt	46	36	58.0	56.6
Trego	56	25	57.9	53.7
Average	49	31	58.1	54.5

• Stripe rust

- Is different organism than leaf rust
- Likely more detrimental to wheat than leaf rust - symptoms
- Is a cool season rust (?)

Stripe Rust, Compendium of Wheat Diseases, 2nd Ed.

- Remain viable at 23 F
- Urediospores begin to degrade at temps above 59F ???
- Optimum temps for spore germination 37F to 59F. Spores will germinate from 32F to 68F. ???
- Resemble a resistant reaction if night temperatures exceed 65F

• Stripe rust

- Is different organism than leaf rust
- Likely more detrimental to wheat than leaf rust symptoms
- Is a cool season rust (?)
- Doesn't over winter in Kansas (?)

• Stripe rust

- Is different organism than leaf rust
- Likely more detrimental to wheat than leaf rust symptoms
- Is a cool season rust (?)
- Doesn't over winter in Kansas (?)
- Stripe Rust races, some 39 exist.
 - IS THERE A NEW ONE?????

IS THERE A NEW RACE?? 2005

- Rust remained active at 80 F temperatures and above
- Resistant varieties exhibited evidence of intermediate/susceptible reactions on leaves
 - Current sources of resistance are temperature sensitive, at very cold temps all varieties will exhibit some susceptibility
 - In 2005 some intermediate varieties were hit very hard

K-State Research and Extension Southwest Area

* Lane, Ness, and Rush Counties comprise the Walnut Creek Extension District

My experiences are primarily from this area of Kansas!

Variety will make a difference! What are the forecasted temperatures?

What is happening in other areas?

Disease Management Options

Cultural practices

Host plant resistance

Chemical management

Cultural practices

- Crop rotation will NOT help an infection that develops from wind carried spores.
- Planting date and rate will likely have little or no effect on disease intensity since this is an early infection from wind carried spores

Disease Management Options

Cultural practices

Host plant resistance

Chemical management

Stripe Rust of Wheat

Stripe Rust of Wheat

Resistance to Stripe Rust

- <u>Resistant</u>: Alliance, Jagger, Karl 92, Larned, Millenium, Overley, Vista, Wesley, Windstar, Arlin (W), Betty (W), Heyne (W), NuFrontier (W), NuHorizon (W), Infinity CL, Hatcher, Protection, Tam 111 (Nothing bullet proof)
- <u>Moderate</u>: 2145, 2174, Akron, Ankor, Arapahoe, Mankato, Thunderbolt, Intrada (W)
- <u>Susceptible</u>: 2137, Trego, Avalanche, Lakin, Prairie Red, Above, Bond CL, Platte, Tam 110

Disease Management Options

Cultural practices

Host plant resistance

Chemical management

Chemical Management of Stripe Rust

- Seed treatment fungicides protect plant until 4-5 leaf stage
- Fungicides applied up to flowering increase kernels/head and kernel weight
- Fungicides applied up to heading increase yield

Chemical Management of Stripe Rust

- Top three leaves are sample unit
- Begin scouting in April
- # tillers with rust on 10 consecutive tillers in a row
- Sample 10 times along a W pattern
- Determine the total # tillers with rust

Chemical Management of Stripe Rust

If less than lower limit: STOP then resample in 7 days

Ave: 7 minutes/field & 11 samples

- If between limits continue to sample
- After 40 tillers: STOP and apply fungicide then resample in 3 weeks

Fungicide Management					
Fungicide*	Tan Spot (Rust	Septoria	Powdery Mildew	
• Tilt:	G	VG	VG	VG	
• Quadris:	VG	Ε	VG	F	
• Headline:	VG	Ε	VG	VG	
• Stratego:	G	Ε	VG	VG	
• Quilt:	VG	Ε	VG	VG	

* Generic fungicides with the same active ingredient may exist.

Fungicide Management					
Fungicide	application window	product cost/acre*			
• Tilt:	> 10.5				
• Quadris:	> 10.5				
• Headline:	> 10.5				
• Stratego:	> 10.5				
• Quilt	» 10.5				
*Application	on cost not included	l.			

Oklahoma State University test: 2003

Oklahoma State University test: 2003

Fungicide Management

resistance

fungicide	chem	mech	risk
• Tilt:	triazole	SBI	mod
• Quadris:	strobilurin	RI	high
• Headline:	strobilurin	RI	high
• Stratego:	mix	mix	high
• Quilt	mix	mix	mix

SBI = Sterol Biosynthesis Inhibtor, RI = Respiratory Inhibitor

Results of Fungicide Tests, 2005.

Wheat variety response to fungicide, 2005. Clark, Comanche, and Stevens Co, Thompson, Rickabaugh, and Gold.

Resistant	Yield		Test weight	
Variety	F	NF	F	NF
Cutter	45	40	56.3	56.3
Jagalene	48	38	57.4	57.1
Jagger	44	39	55.2	54.9
Overley	53	46	55.9	55.4
T81	40	35	56.7	55.8
Tam 111	53	50	56.9	56.6
Average	47	41	56.4	55.9

Overall Average

43

35

55.4

56.3

Wheat variety response to fungicide, 2005. Clark, Comanche, and Stevens Co, Thompson, Rickabaugh, and Gold.

Intermediate	Yield		Test weight	
Variety	F	NF	F	NF
2145	43	38	56.6	56.3
2174	40	33	57.1	55.6
Stanton	42	34	55.8	54.1
Thunderbolt	40	33	57.1	57.1
Average	41	34	56.7	55.8
Overall Average	43	35	56.3	55.4

Wheat variety response to fungicide, 2005. Clark, Comanche, and Stevens Co, Thompson, Rickabaugh, and Gold.

Susceptible	Yield		Test weight	
Variety	F	NF	F	NF
2137	42	28	56.4	54.6
Above	35	30	55.2	53.7
Lakin	33	22	53.7	52.0
OK102	46	40	57.4	56.5
Trego	44	33	57.0	55.8
Average	40	31	55.9	54.5

 Overall Average
 43
 35
 56.3
 55.4

Wheat variety response to fungicide, 2005. Clark, Comanche, and Stevens Co , Thompson, Rickabaugh, and Gold.

	Yield		Test weight	
Variety	F	NF	F	NF
Resistant	47	41	56.4	55.9
Intermediate	41	34	56.7	55.8
Susceptible	40	31	55.9	54.5

 Overall Average
 43
 35
 56.3
 55.4

Jagger response to fungicides, 2005. SWREC, Garden City, KS, Thompson.

Fungicide	Yield	Testwt	Stripe R.	Leaf R.
	bu/a	lb/bu	(% of F	lagleaf)
Untreated	57	59.5	4	9
Headline 6oz FLE	54	59.8	2	3
Headline 6oz Boot	55	60.2	2	2
Tilt 2 oz Boot	55	59.8	2	2
Tilt 4 oz Boot	57	59.5	2	1
LSD (0.05)	NS	0.3	1	3

Thunderbolt response to fungicides, 2005. Comanche Co., KS, Thompson and Rickabaugh.

Fungicide	Yield	Testwt	Stripe R.	
	bu/a	lb/bu	(% of Flg)	
Untreated	45	61.6	6	
Headline 6oz Boot	45	62.0	4	
Tilt 4 oz Boot	41	62.1	4	
Quadris 6.2 oz Bt	44	62.1	4	
Quilt 14 oz Boot	44	62.0	4	
LSD (0.05)	NS	NS	1	

Stanton response to fungicides, 2005. SWREC Garden City, KS, Thompson.

Fungicide	Yield	Testwt	Stripe R.
	bu/a	lb/bu	(% of Flg)
Untreated	39	62.6	44
Headline 6oz Boot	45	62.2	13
Tilt 4 oz Boot	45	62.3	19
Quadris 6.2 oz Bt	36	62.3	19
Quilt 14 oz Boot	43	62.3	16
LSD (0.05)	NS	NS	NS

Stripe Rust Summary

- Stripe rust is a cool season rust infecting wheat earlier in the season than leaf rust and thus has the potential to reduce yield more than does leaf rust
- Fungicides are not an absolute return on your money!
 - Consider variety, temperature/forecast (Colorado maybe cooler)
- Fungicides can provide a huge return!
 - Stripe rust should command a lot of respect (2001 KS data)
- Certified seed production
 - If disease is present and quality is essential to receive benefit/payment – TREAT!

Disease System Components

Acknowledgements:

Special thank you to Dr. Jim Stack, Extension Plant Pathologist, Kansas State University for the major contributions to this presentation.

